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In this paper, we present a new approach capable of working under coherent and incoherent illumination
for achieving superresolution by random coding of the object’s angular information. By placing two static
random masks in optically conjugate planes inside an aperture-limited imaging setup, one may obtain a
transmitted image containing spatial resolution higher than the one obtained without the masks. As the
most noticeable fact, the superresolution effect is obtained without imposing any restrictions either in the
time domain or in the field-of-view domain but rather only in the dynamic range of the camera device.
Experimental verifications for the proposed technique with incoherent illumination with a low numerical
aperture (NA) lens are presented. © 2010 Optical Society of America
OCIS codes: 050.1940, 100.6640, 110.0110.

1. Introduction

Superresolution is an interesting as well as practical
field in which one exceeds the diffraction as well as
the geometric limits of the imaging system by ima-
ging smaller spatial features that are not resolvable
under the conventional imaging mode by the same
imaging system [1–3]. The improvement in resolu-
tion is obtained by imposing restrictions in various
other domains, such as time [4–6], field of view [7–9],
code [10–12], polarization [13–15], wavelength [16–
18], and dynamic range [19]. The operation principle
is basically the same for all the strategies. This in-
cludes encoding the object’s small spatial features
(which cannot pass through the imaging system) in
the domain in which the restriction is to be imposed
and, once they are transmitted through the imager,
properly decoding them into the space domain to
finally achieve a superresolved image.

Time domain is one of the most appealing appro-
aches to achieve superresolution [4–6,20–25]. In
such a case, the spatial-frequency content of the
object’s spectrum is encoded into the temporal band-
width degree of freedom because the object’s ampli-

tude distribution is temporally restricted, that is,
time independent or at least static during the time
when performing the approach. Then, different fre-
quency band passes are transmitted through the lim-
ited system aperture in different time slots as a
consequence of the time multiplexing performed over
the object’s spectrum. After that, a superresolved im-
age of the object is recovered by means of a proper
decoding process. Classically, the encoding/decoding
is performed using diffraction gratings (physical or
projected) in movement (transversal or axial). How-
ever, time multiplexing superresolution needs that
the object remains constant during the observation
time. This fact disables this approach in the charac-
terization of fast dynamic processes.

On the other hand, superresolution by multiplex-
ing in the object field-of-view domain instead of time
domain [7–9,26–29] is also a common approach. Its
underlying principle is based on angular coding of
the object’s small spatial features by adding a restric-
tion over the size of the field-of-view degree of free-
dom. In other words, additional spatial-frequency
content is multiplexed in different positions of the ob-
ject field of view by using static rather than dynamic
encoding/decoding gratings. To allow that fact, the
object must be restricted to a limited area in the
imaging system field of view to avoid overlapping
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of the different band pass images. Thus, the use of
static gratings allows working with temporally mov-
ing objects.

In that sense, a very interesting approach avoiding
object field-of-view restriction to achieve superreso-
lution was reported in [18]. In that work, the authors
proposed the use of two static gratings and polychro-
matic illumination. The incoherent illumination
averages the ghost images obtained outside the re-
gion of interest because the positions of those images
are wavelength dependent. Thus, no limitation over
the object field of view is required any more due to
the wavelength averaging. However, the proposed
system affects the dynamic range of the detector
device because the background intensity level is im-
proved as a consequence of the averaging.

Another approach for superresolved imaging with-
out restricting the field-of-view domain was reported
by Zalevsky et al. [30]. The key point is to use the
various dilations of the gratings instead of shifting
them: instead of moving the grating to allow time
shift of the object’s spatial-frequency information,
they achieve the required encoding/decoding process
by spectral dilation, that is, by considering two
identical amplitude masks with varying periods
along the x- and y-orthogonal directions. In the en-
coding, the variable period mask provides different
scaled replicas of the object’s spectrum at the system
Fourier plane, allowing the transmission of different
spatial-frequency bands in different angles. How-
ever, the different spatial-frequency bands appear in
different areas of the system aperture due to the local
variation of the mask’s period: since each local region
comes from a different scaled period, the scaling pro-
vides orthogonality between the different trans-
mitted band passes. Thus, the role of the second
grating is to reposition each transmitted band pass
to its proper location in the object’s spectrum, that
is, to its proper angular direction. Finally, the aver-
age along the y direction eliminates the unwanted
spectral information while enhances the desired
one due to the orthogonal coding/decoding process.
Thus, it is possible to retrieve a superresolved image
along the x direction. The method reported in [30] is
valid for one-dimensional (1D) objects as it does not
sacrifice either time or field of view; however, the
dynamic range of the output image is lowered due
to the averaging along the y axis.

In this paper, we generalize the concept of super-
resolution based on two static gratings by using
two random static masks for the encoding/decoding.
Although the use of random patterns to achieve
superresolution has been reported previously in
the literature [31–34], multiplexing in other domains
is also needed. Now, the restriction is only imposed in
the dynamic range because the contrast of the ob-
tained superresolved image is reduced. As in the case
of static grating approaches, the randommasks must
have smaller features than those aimed to be re-
solved in the object because we are implementing an-
gular multiplexing. However, now, we are expanding

the concept reported in [30] to the two-dimensional
(2D) case while reporting the application of the meth-
od not only for coherent but also for incoherent (ex-
tended white-light source) illumination. Moreover,
the gain in resolution depends on the encoding mask
pixel size and a factor of noise but it is independent
from the NA of the imaging system. This is an impor-
tant improvement in comparison to the original
superresolving idea considering two fixed variable
masks. The achieved experimental results suggest
that the technique can be implemented in micro-
scopy by properly selecting the pixel size of the en-
coding masks to the NA of the objective lens.

The manuscript is organized as follows. In
Section 2, we present the mathematical analysis.
In Section 3, we perform the numerical simulation
results for the suggested system. In Section 4, we
perform the experimental validation. Finally, the
paper is concluded in Section 5.

2. Mathematical Derivation

The schematic sketch of the proposed setup, which is
a 4F imaging processor (unity magnification), is
shown in Fig. 1. We now analyze it mathematically
and prove that indeed a superresolved imaging is ob-
tained. In addition, we show the required trade-offs
to obtain the desired outcome. For simplicity, we per-
form 1D analysis. The extension to 2D is straightfor-
ward. Thus, the field distribution after free-space
propagation of z1 is equal to

gzðxÞ ¼
Z

GðμÞ expðπiλz1μ2Þ expð2πixμÞdμ; ð1Þ

where λ is the wavelength and

GðμÞ ¼
Z

gðxÞ expð−2πixμÞdx: ð2Þ

We multiply this distribution by the random
encoding mask denoted by mðxÞ and the obtained
product equals

Z �Z
Mðμ − μ1ÞGðμ1Þ

× expðπiλz1μ12Þdμ1
�
expð2πixμÞdμ; ð3Þ

Fig. 1. (Color online) Theoretical layout of the proposed setup.
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while

MðμÞ ¼
Z

mðxÞ expð−2πixμÞdx: ð4Þ

Now we perform back-free-space propagation of
−z1 to obtain the field distribution in the input plane
while the effect of the encoding mask is included:

Z �Z
Mðμ − μ1ÞGðμ1Þ expðπiλz1μ12Þdμ1

�

× expð−πiλz1μ2Þ expð2πixμÞdμ: ð5Þ

We progress now to the aperture plane by performing
a Fourier transform:

Z �Z �Z
Mðμ − μ1ÞGðμ1Þ expðπiλz1μ12Þdμ1

�

× expð−πiλz1μ2Þ expð2πixμÞdμ
�

× exp
�
−

2πiμ2x
λF

�
dx; ð6Þ

where F is the focal length of the lens (see Fig. 1).
After mathematical simplification of Eq. (6), one
obtains

� Z
M

�μ2
λF − μ1

�
Gðμ1Þ expðπiλz1μ12Þdμ1

�

× exp
�
−πiλz1

�μ2
λF

�
2
�
: ð7Þ

We multiply by the aperture (we assume a rect func-
tion for the aperture):

� Z
M

�μ2
λF − μ1

�
Gðμ1Þ expðπiλz1μ12Þdμ1

�

× exp
�
−πiλz1

�μ2
λF

�
2
�
rect

� μ2
Δμ2

�
; ð8Þ

where Δμ2 is the width of the rectangular aperture.
After an additional optical Fourier transform,

Z �Z
M

�μ2
λF − μ1

�
Gðμ1Þ expðπiλz1μ12Þdμ1

�

× exp
�
−πiλz1

�μ2
λF

�
2
�
rect

� μ2
Δμ2

�

× exp
�
−2πiμ2x

λF

�
dμ2: ð9Þ

Then, we change the variables into ν ¼ ðμ2=λFÞ:
Z �Z

Mðν − μ1ÞGðμ1Þ expðπiλz1μ12Þdμ1
�

× expð−πiλz1ν2Þrect
� ν
Δμ2=λF

�

× expð−2πiνxÞdν: ð10Þ

Now, we need to have a free-space propagation of z2
to reach the random decoding mask. To do that we
use the angular spectrum approach for computing
the free-space propagation, i.e., we multiply the spec-
trum by the chirp phase factor:

Z �Z
Mðν − μ1ÞGðμ1Þ expðπiλz1μ12Þdμ1

�

× expðπiλðz2 − z1Þν2Þrect
� ν
Δμ2=λF

�

× expð−2πiνxÞdν: ð11Þ

After propagating a free-space distance of z2, we
multiply by the decoding random mask m�ðxÞ,

m�ðxÞ ¼
�Z

MðμÞ expð2πixμÞdμ
��

¼
Z

M�ð−μÞ expð2πixμÞdμ; ð12Þ

and the expression that we obtain is

Z �Z
Mðν − μ1ÞGðμ1Þ expðπiλz1μ12Þdμ1

�

× expðπiλðz2 − z1Þν2Þrect
� ν
Δμ2=λF

�

×
�Z

M�ð−μ2Þ expð2πixμ2Þdμ2
�

× expð−2πixνÞdν: ð13Þ

It may be rewritten as a convolution in the Fourier
domain:

Z Z �Z
Mðν1 − μ1ÞGðμ1Þ expðπiλz1μ12Þdμ1

�

× expðπiλðz2 − z1Þν12Þrect
� ν1
Δμ2=λF

�

×M�ð−νþ ν1Þ expð2πixνÞdν1dν: ð14Þ

Now, we need to do additional free-space propaga-
tion of −z2, which means another Fourier multiplying
by the chirp factor and inverse Fourier:
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Z Z �Z
Mðν1 − μ1ÞGðμ1Þ expðπiλz1μ12Þdμ1

�

× expðπiλðz2 − z1Þν12Þrect
� ν1
Δμ2=λF

�

×M�ð−νþ ν1Þ expð−πiλz2ν2Þ
× expð2πixνÞdν1dν:

ð15Þ

This is the field distribution in the output plane.
Note that the masks of encoding and decoding are
random and, therefore, are uncorrelated:

Z
MðνÞM�ðν − ν1Þdν ¼ δðν1Þ: ð16Þ

This uncorrelation relation is very strong (the
mask is very random), and it may be rewritten as

Z
f ðνÞMðνÞM�ðν − ν1Þdν ¼ δðν1Þ ð17Þ

for any general function f ðνÞ. Because we are talking
about fields, M can be complex and nonhermitic. We
rewrite Eq. (15) as

Z Z
Gðμ1Þ expðπiλz1μ12Þ expð−πiλz2ν2Þ expð2πixνÞ

×
�Z

expðπiλðz2 − z1Þν12Þrect
� ν1
Δμ2=λF

�

×Mðν1 − μ1ÞM�ð−νþ ν1Þdν1
�
dμ1dν; ð18Þ

and use the assumption of Eq. (17), yielding

Z Z
Gðμ1Þ expðπiλz1μ12Þ expð−πiλz2ν2Þ

× expð2πixνÞδðν − μ1Þdμ1dν; ð19Þ

and resulting with

Z
Gðμ1Þ expðπiλðz1 − z2Þμ12Þ expð2πixμ1Þdμ1: ð20Þ

For intensity, in the spatially coherent case wemay
write

IðxÞ ¼
����
Z

Gðμ1Þ expðπiλðz1 − z2Þμ12Þ expð2πixμ1Þdμ1
����
2
:

ð21Þ

For z1 ¼ z2, one obtains superresolution because
the field of the output is equal to the high resolution
object’s field gðxÞ. An interesting application for the
proposed setup can be filtering. By choosing z1 − z2 to
not be zero, we actually apply filtering over the input
object.

Note that, for the assumption of Eq. (17), the Four-
ier of the encoding/decoding mask M must contain a
lot of features, which means that mðxÞ should be
large in the spatial domain—at least as large as
gðxÞ and definitely much larger than the point spread
function of the imaging system before superresolu-
tion (within the width of the aperture, which was
a rect in our case, the function M should have as
many spatial features as possible). In addition, the
spectral width of the coding/decoding mask, i.e.,
the width of M should be as large as the synthetic
aperture we aim to generate in the superresolution
process. This, in a way, resembles CDMA coding,
where orthogonality is also required to separate
mixed bits. In our case, the resolution of mðxÞ, i.e.,
its smallest feature should be at least as small as
the smallest feature in gðxÞ that we want to see di-
vided by the superresolution factor. This is the addi-
tional cost for the superresolution improvement in
addition to the energy and contrast losses.

3. Numerical Simulation of the System

We presented three numerical simulations: one for
1D superresolution and two numerical simulations
for 2D resolving. For the system simulations, we have
assumed spatially coherent illumination at a wave-
length of 500 nm. The size of the pixels in our input
mask was 0:1 mm, and the density of the random
holes in the encoding/decoding mask was 25%. An ex-
ample of an encoding/decoding mask that we used in
our simulations is presented in Fig. 2.

In the 1D simulation, we chose the distances
z1 ¼ z2 ¼ 8 m. The size of the low pass filter was
1:99 lines=mm. The width of the lines of the input
object was 0:2 mm.

In the 2D simulation, we chose the distances z1 ¼
z2 ¼ 10 m for the grating input and 12 m for the lat-
tice input object. The size of the low pass filter was of
1:99 lines=mm in both axes. The width of the lines of

Fig. 2. Mask that was used for the encoding and the decoding in
the numerical simulation.
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the input grating was 0:28 mm, and the size of the
lattice unit was 0:2 mm × 0:2 mm.

In Fig. 3, we present the numerical simulations of
the setup. In Fig. 3(a), we show the image of the high-
resolution reference. In Fig. 3(b), we see the low-
resolution reference as it is seen after the spatial

blurring due to a low-resolution imaging system.
After applying the proposed approach, by adding
the random masks, the obtained result are shown
in Fig. 3(c). In Fig. 3(d), one may see the results of
Fig. 3(c) after reducing the additive noises due to
the processing procedure. One may see that the re-
constructed image is very similar to the original
high-resolution reference. The signal-to-noise ratio
(SNR) of the image was improved from 3 dB in the
low-resolution image of Fig. 3(b) to about 6 dB in
Fig. 3(c) after adding the random mask (the superre-
solved reconstruction) and to 10 dB in Fig. 3(d) after
reducing the additive noise.

In Fig. 4, we present two additional numerical
simulations of the proposed technique for the 2D
superresolution case. In Figs. 4(a)-I and 4(a)-II, we
show two high-resolution input reference images. In
Figs. 4(b)-I and 4(b)-II, we see the low-resolution re-
ferences as they are seen after the spatial blurring
due to a low-resolution imaging system. After apply-
ing the proposed approach by adding the random
masks, the obtained results are seen in Figs. 4(c)-I
and 4(c)-II. In Figs. 4(d)-I and 4(d)-II, we present
the obtained results of Fig. 4(c)-I and 4(c)-II after re-
ducing the additive noise generated in the processing.
One may see that the reconstructed images in the 2D
case are very similar to the original high-resolution
references, exactly as was obtained in the 1D case.
Also in the 2D images, the SNR has been improved.
In the case ofFig. 4(b)-I, theSNR improvement is from
2.9 to 3:4 dB after the addition of the random mask
yielding the superresolved image of Fig. 4(c)-I and
to 6:7 dB after reducing the additive noise as seen
in Fig. 4(d)-I. For the second image, the improvement
in the SNRwas from 2:9 dB in Fig. 4(b)-II to 3:5 dB in
Fig. 4(c)-II after adding the random mask (superre-
solved image) and to 10:22 dB after reducing the
additive noise as obtained in Fig. 4(d)-II.

Fig. 3. Numerical results for 1D superresolution: (a) high-
resolution reference image; (b) image after reducing high spatial
frequencies; (c) recovered image; (d) recovered image after redu-
cing noise.

Fig. 4. Numerical results for 2D superresolution [(I) 2D input grating and (II) 2D input lattice]: (a) high-resolution reference image; (b)
image after reducing high spatial frequencies; (c) recovered image; (d) recovered image after reducing noise.
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4. Experimental Results

To validate the proposed approach working under
incoherent illumination, the optical setup shown in
Fig. 5 was assembled at the laboratory. Extended
(nonpunctual) polychromatic (white light) illumina-
tion is provided by Fiber-Lite MI-150 fiber optic illu-
minator (halogen lamp source focused onto a fiber
optic light guide). For the encoding/decoding process,
two identical binary amplitude square random
masks with different magnifications are used in the
experiment. Figure 6 depicts the area of the masks
that is used for encoding/decoding the object’s angu-
lar information and where the black circle acts as a
reference detail. The masks are fabricated by photo-
lithography on chrome on glass substrate. The en-
coding mask (M1) has a pixel size of 3 μm and a total
width of 4:5 mm, while the decoding one (M2) has
a pixel size of 20 μm and a total with of 30 mm.
Thus, the corresponding mask magnification is set
to be 6.67.

Two imaging modules compose the experimental
setup. In the first one, a variable circular diaphragm
is attached to the back focal plane of a commercial
microscope lens having 0:1 NA. The diaphragm al-
lows us to stop down the resolution of the objective
lens to match its NA with the size of M1 used in
the experiment. The magnification of the first ima-
ging system must be properly adjusted to be equal
to that one defined by both random masks. Other-
wise, no superresolution effect will be attainable.
To allow this, the first imaging system is placed onto
a micrometer stage to allow magnification adjust-
ment between the M1 and M2 planes.

Figure 7 depicts the cases without and with proper
magnification matching between the masks. The
white circle is for referencing both images and also
for Fig. 6. Since the input object is placed before M1,
its image will be placed also in a plane previous to
plane M2. Thus, the second imaging module images
the aerial image provided by the first system through
M2. A photographic objective with variable focus (or
magnification) is selected as the second imaging
module to magnify the aerial image into the output

plane where the CCD (Basler A312f, 582 × 782 pix-
els, 8:3 μm pixel size, 12 bits=pixel) is placed. This
second imaging module plays the role of the tube lens
used in microscope systems. Because of the magnifi-
cation ratio between the two imaging modules of the
setup, M2 could be a low-frequency mask (higher
pixel size than M1, as it was previously described)

Fig. 5. (Color online) Experimental setup for incoherent illumi-
nation case.

Fig. 6. Picture of the theoretical design of the random mask
used in the experiment (only a small part is included). The black
circle marks a mask’s detail that can also be traced in Fig. 7 for
reference.

Fig. 7. Example of (a) magnification mismatch and (b) perfect
magnification adjustment between the two masks. White circle
marks the same area for reference.
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and there is no need for high-resolution optics in the
second imaging module.

Under these assumptions, we perform our super-
resolution approach. A positive USAF resolution
test target is used as the input object. The circular

diaphragm of the first imaging lens is closed to stop
down the resolution of the experimental setup.
Figure 8(a) depicts the low-resolution image provided
by the experimental setupwhereGroup6—Element 3
(G6-E3 from now on) is the last-resolved element in
the test that defines a resolution limit that is equal
to 12:4 μm (80:6 lp=mm). This resolution limit corre-
sponds with a theoretical value of 0:022 NA in the
first imaging module, considering the central wave-
length (0:55 μm)of the illumination. After performing
the superresolved approach, the resolution is im-
proved until G7-E2 corresponding with 6:9 μm
(144:0 lp=mm), as one can see in Fig. 8(b), which
defines a resolution gain factor equal to 1.8.

Because the pixel size in M1 has a width of 3 μm,
the expected theoretical resolution limit is twice the
pixel width, that is, 6 μm (or 166:7 lp=mm). This re-
solution limit corresponds in the USAF test with G7-
E3 (161 lp=mm), which is very close to the theoretical
limit, and it is not resolved due to experimental fac-
tors, such as noise, contrast reduction, mismatch be-
tween masks, etc. However, in any case, this is the
best resolution limit that can be achieved using the
proposed approach: one defined by the minimum per-
iod of the encoding mask. Such a minimum resolu-
tion limit is theoretically independent from the NA
of the first imaging module. Then, our purpose is to
demonstrate this theoretical assumption. Figure 9
depicts the experimental results achieved with dif-
ferent diameters of the limiting diaphragm. Running
from left to right, the NA value is increased from
0.016 to 0.022 and to 0.031, and the resolution limit
is improved from 17:5 μm [G5-E6 in Fig. 9(a)],
12:4 μm [G6-E3 in Fig. 9(b)], and 8:8 μm [G6-E6 in
Fig. 9(c)] to 6:9 μm [G7-E2 in Fig. 9(d)] and 6:2 μm
[G7-E3 in Figs. 9(e) and 9(f)]. The corresponding re-
solution gain factors are 2.5, 2, and 1.4, respectively.
Thus, it is demonstrated that the resolution limit of

Fig. 8. Experimental results: (a) without and (b) with using the
proposed approach and corresponding with conventional low-
resolution and superresolved images, respectively.

Fig. 9. Experimental results showing that the gain in resolution does not depend on the NA of the first module imaging system: (a)(d), (b)
(e), and (c)(f) depict different cases of low and superresolved images corresponding with different diameters of the lens diaphragm.
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the setup is defined by the minimum pixel size of the
encoding mask M1.

5. Conclusions

In this paper, we have presented a new direction for
superresolution imaging involving two static ampli-
tude random masks that do not have to be in contact
with the imaged object. The outcome is a superre-
solved image in which one does not have restrictions
either in time or in field of view but rather only in the
dynamic range of the detection imaging device. We
have numerically simulated and experimentally
validated the proposed concept for coherent and
incoherent illuminations, respectively. In the simula-
tions and the experimental validation, we considered
a 4F imaging processor (unity magnification) and a
low NA imaging setup (adjustable arbitrary magni-
fication), respectively.

One of the main advantages of the reported ap-
proach is that the achieved spatial-resolution limit
does not depend on the NA of the imaging lens but
rather it is a function of the minimum pixel size of
the encoding mask. Because the encoding mask is
random, its period varies continuously, starting from
the double of the minimum pixel size of the encoding
mask. Thus, on one hand, there is no need to match
the mask period to the NA of the imaging lens, as
happens in other similar approaches using diffrac-
tion gratings. On the other hand, the resolution gain
is not limited to a given value because the final re-
solution limit depends on the encoding mask pixel
size and a limiting factor incoming from noise.

Part of this work was supported by the Spanish
Ministerio de Educación y Ciencia and FEDER funds
under the project FIS2007-60626. Also, the authors
thank the Servei Central d’Instrumentació Científica
from the Universitat Jaume I of Castellón for provid-
ing the random mask fabrication.
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